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Abstract

A generalized purely kinematic model is proposed for the description of the displacement field in a granular material slowly

discharging from a hopper. In addition to the diffusion constant of the well-known kinematic model, our generalized version includes a

new parameter accounting for the dilatancy effect that takes place at early stages of the flow. Experimental measurements of particle

tracers displacements were made in a ‘‘quasi two-dimensional’’ hopper and a promising agreement with the model was found.

Applications to quasi static flows occurring in underground mining are discussed. It is shown that the effect of a small dilation on

drawbody shapes can be introduced by taking a slightly larger diffusion constant DP in the kinematic model. As a consequence, the

drawbody width W links to the drawbody height H as W 2 / DPH, with DP being a linear function of granulate size. This result that is

valid in two and three dimensions, captures the main features of independent laboratory measurements as well as observations performed

in operating mines.

r 2007 Published by Elsevier Ltd.
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1. Introduction

The prediction of particular type of hopper flows that
occur in many underground mines when extracting mineral
by the ‘‘block caving method’’ [1] is of fundamental
importance to optimize ore recovery. The general features
of these flows, the related open problems as well as the
approaches in use for mining applications have recently
been discussed by several authors, for instance, Brown [2]
and Rustan [3]. The major difficulty in understanding these
flows is the absence of a reliable theory to describe the
complex rheological properties of granular materials. In
this method, a large number of drawpoints is organized in a
periodic lattice such that the geometry and distance
between neighbors optimize the global extraction process
e front matter r 2007 Published by Elsevier Ltd.
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and ore recovery. To develop insight into the optimization
process, experimental efforts have been focused on the
prediction of the initial locus of material that is extracted
from a single drawpoint. Such a locus is named the
‘‘drawbody’’, ‘‘drawzone’’ or isolated extracted zone (IEZ)
and its size depends mainly on the volume of extracted
material. Besides the drawpoints geometry and the distance
between them, another important parameter is the average
size of granulates which might influence the IEZ size. In
addition, even in the case of prefractured procedure, the
material inside the cavity is initially in a compact state and
dilates as it flows. In turn, the geometry of IEZ provides
useful information for the optimization of distance between
drawpoints in a mine as well. In practice, the extracted
material locus, resulting from either simultaneous or
sequential extractions from several drawpoints, is roughly
estimated by the elementary geometrical superposition of
IEZs produced by drawpoints under study. Although this
lar displacements in block caving: Dilatancy effects on drawbody.... Int J
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approximation is rather crude, due to the lack of both
analytical models and reliable experimental data, little
progress has been made in describing the flow resulting
from interactions of several drawpoints. In a recent paper
[4], we have briefly reviewed the available models to
account for the shape of the IEZ. The Bergmark Roos
hypothesis was discussed and it was shown that when the
continuity equation is considered, material local density
unphysically increases with time. More realistic drawbody
shapes were calculated for flows predicted from a plasticity
theory model as well as from a kinematic model.
Applications to complex configurations where flow is
produced by two drawpoints, either in simultaneous or
sequential extractions, were discussed in detail. In parti-
cular, by taking advantage of the kinematic model’s
linearity and the geometrical simplicity of the plasticity
model, the combined extracted zone was calculated exactly
and its dependence on distance between drawpoints was
investigated. Here we present several laboratory experi-
ments intended to mimic relevant aspects of flows
encountered in copper mining when the block caving
technique is applied. Special attention is devoted to the
dilation induced by decompaction of the initially compact
material. To capture the experimental finding, we derive a
simple generalized kinematic model in which local dilation
is included in a heuristic constitutive law. In this
approximation, the local dilation is assumed to depend
only on local grain displacements. A finite elements code is
used to solve the model and experiments are performed in a
quasi two-dimensional (2D) geometry to check the validity
of our assumptions.

2. Gravity flow of broken rocks in caving mines: previous

works

In this section, we briefly summarized some attempts to
describe the flows of broken rocks taking place in caving
mines. This summary is far from being complete since our
attention is mainly focused on either laboratory experi-
ments or intermediate scale test that compare, at least
partially, with our results. To our knowledge, only a few
full scale tests have been carried out to study granular
material in caving mines and most of them are for sublevel
caving rather than block caving. In our opinion, the
available data, although valuable, is not sufficient to
provide a detailed description of flows features, hence we
do not discuss them here.

Laboratory experiments on sand models are more often
developed as scaled systems to mimic underground flows.
Kvapil [5,6] attempted first to provide mathematical basis
to the granular flow in hoppers and bins. Although simply
using a 2D model with colored particles as lines-tracers,
this work was extended to idealized large scale flows taking
place at iron ore mines and used as a valuable design
tool [7]. Based on this model, the shape of both the
drawbody zone and the loosening zone were assumed
as ellipsoidal. One of the important results of this study
Please cite this article as: Melo F, et al. Kinematic model for quasi static granu
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is that, the volume of discharged material, O, links to the
draw ellipsoid height H and width W as, W=2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

O=ð2:094HÞ
p

. In addition, scale factors between both
ellipsoids were proposed, for instance, the width of
loosening zone W l scaled as W l � 2:5W .
Several authors including Heslop, Laubscher, and

Marano [8–11] developed experiments in a 3D model to
investigate the interactive drawing of adjacent drawpoints.
The laboratory container had 76 cm long, 76 cm wide and
240 cm height, whose base contained 50 drawpoints of
2.5 cm in diameter, evenly spaced. The spacing between
drawpoints could be varied for different experimental
conditions. Care was taken to simulate the actual
geometrical condition in mines. The material used was
sand, with average size of 0.7mm. Drawpoints in this
model were drawn simultaneously and the movement of
the material under draw was followed by the help of
colored layers of sand. At the end of representative runs,
water was poured on top of the sand model, in order to wet
it homogeneously. Wet sand provided enough cohesion to
allow the cutting of vertical sections through the material,
revealing the position of the colored layers.
The same authors carried out experiments in which the

drawpoints were spaced at the width of a previously
measured isolated drawzone (IEZ). A uniform lowering of
the upper markers occurred when the drawpoints were
drawn simultaneously. This result was then compared to
the reconstructed drawzone of isolated drawpoint experi-
ment, concluding that the ellipsoid theory does not apply in
this situation. According to our previous work [4], in which
we describe in some detail how the interacting flows can be
treated in a linear approximation, both situations are not
equivalent and therefore different tracers motion are
expected.
Laubscher [9,10] then proposed a phenomenological

flow interaction theory, stating that optimal interaction
will occur when the drawpoints are spaced at 1.5 times the
width of the isolated drawzone. Although this criterium is
of intensive practical use when optimizing block caving
mines, a detailed analysis of drawpoints interaction is still
lacking. Our linear theory of flow interactions presented in
Section 5.3 provides a mathematical support to this type of
criterium.
Model experiments using gravel instead of sand at

relatively large scale [12–14] have been developed providing
both useful and apparently contradictory information on
IEZs geometry. For instance, in Peters’ model [13], where
an essentially 2D system with broken rock, sized at 0.5, 1.0,
and 1.5 in along with the equal fraction mixtures of these
sizes have been used, it is shown that the resultant width of
the draw envelope is not affected by the particle size. This
result seems to contradict Kvapil’s ellipsoid theory. In turn,
Power [14] carried out tests in a 3D gravel model and did
find a small particle size effect on the width of the draw
envelope. It is worth to note that our calculations based on
kinematic model [4] predicts that W / d1=4, which is
compatible with Power results if d is taken as the average
lar displacements in block caving: Dilatancy effects on drawbody.... Int J
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particle size. In addition, for 2D system, we predicts [4],
W / d1=3, which is still a slowly varying function of d and
might explain why Peters did not observe appreciable
variation of W . In our opinion, data reported in Ref. [13]
are compatible with 1

3
power law if the width of the

drawpoint is included properly, see Section 5.2.
Fig. 1. Front view of the experimental set up. Horizontal lines, 3 cm apart,

are made of colored particles used as tracers. A network of equidistant

apertures, 2 cm apart, allows to explore flow interactions for a wide range

of aperture distances.
3. Granular flow: kinematic model

Despite its complexity, the flow of granular materials can
be described by hydrodynamical models whenever all the
relevant characteristic dimensions of the container are
much larger than granulate size. This approximation has
been supported by experimental studies conducted by
ourselves and many others, see for example [15], consider-
ing different particle shapes, irregular and spherical and
even mixtures [16]. Thus, we expect that not only
laboratory experiments fulfill the requirement for hydro-
dynamical approximation but, many flows taking place
during underground mining when granulated material of
narrow size distribution is involved. To our knowledge this
condition is at least fulfill partially or temporally in many
operating mines. Several effects might, however, challenge
the prediction capability of hydrodynamical approach
when applied to mining, for instance, the presence of
relatively large inhomogeneities in granulate size and
material properties, the size reduction due to friction and
high pressure, as well as large fluctuations due to jamming
or shear bands [17]. Detailed descriptions of these
situations, suitable for practical applications, have not
been developed until present.

Typical candidates amenable to be treated by hydro-
dynamical approaches are the granular flows driven by
gravity found in hoppers. In this approximation two
distinct regimes can be found, namely viscous and inertial.
The former regime develops when gravity is balanced by an
effective viscosity. However, since Bagnold it is well
accepted that no intrinsic viscosity exists in granular
materials as in diluted gases. As was suggested by Bagnold
[18], the viscous stress s is a quadratic function of both the
local shear rate qxV , and the particle diameter d, i.e.,

s�d2
ðqxV Þ2. Then, when gravitational acceleration, g, is

included the Bagnold law for the mean flow, V�
ffiffiffiffiffiffiffiffi
gR3

p
=d,

is obtained. This law is not only a function of the hopper
aperture R, but also of the granulate size d. To our
knowledge there is no experimental evidence to support
this regime. On the other hand, when gravity balances
inertia, i.e., the usual convective term in transport
equations, we obtain the inertial regime in which the

typical mean speed, V�
ffiffiffiffiffiffi
gR
p

, is independent of the grain
size. This regime is well observed experimentally in a wide
variety of granular materials [19,20]. Note that in a simple
fluid, the characteristic length scale is the fluid level H, and

the mean velocity is given by V�
ffiffiffiffiffiffiffi
gH
p

. Many theoretical
models have been developed to explain this deep difference
between granular materials and fluids. A more elaborate
Please cite this article as: Melo F, et al. Kinematic model for quasi static granu
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approach to predict velocity distributions of granular
materials is based on plasticity theory [17], where the
velocity distribution is obtained from the stress distribution
calculated in the static material. In spite of the apparent
simplicity of these models, little progress has been made in
predicting velocity fields in complex configurations. To
overcome these difficulties, several authors proposed
alternative approaches by either modeling the flow as the
upward diffusion of voids [21] or by considering the
probability of granulate motion as a random process [22].
In both cases, the velocity diffuses upward from the
aperture. Following the same ideas, Nedderman and Tüzün
[23], developed a model in which the particles located
immediately above the orifice fall down, letting the
particles in the upper layers slide into the vacant space.
Thus, it is expected that the horizontal velocity depends on
the gradient of the vertical velocity, U ¼ �DpqxV . Using

mass conservation, it is easily found that qyV ¼ DPqxxV .

The same authors have shown that the kinematic model is
successful in describing the velocity distribution in a
rectangular hopper under stationary conditions, when the
material is in a loose packing state [23]. However, if
the material inside the hopper is in a nearly compact state
the agreement becomes poor [24], due to the dilation that
takes place when a densely packed granular material starts
to flow. Recent experimental results [16,25] confirm these
findings and show that streamlines are correctly predicted
by kinematic models in the loose packing regime.

4. Experimental results

Our experimental setup is described in detail in Ref. [26].
Here we discuss a few aspects necessary to contrast
experimental finding with the theoretical models developed
below. A quasi 2D flat bottomed hopper was designed to
observe the flow of grains, Fig. 1. This hopper is made of
lar displacements in block caving: Dilatancy effects on drawbody.... Int J
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Fig. 3. Tracer lines deflection produced by granulates displacements in the

case of two apertures in simultaneous extractions. The distance between

drawpoints is 8 cm. Left panel: after two extractions. Middle panel: after

four extractions. Right panel: after eight extractions.
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two parallel plexiglass plates, with 110 cm wide and 100 cm
height, held a distance h ¼ 2 cm apart by a rigid frame. The
space between the plates was filled with glass beads of d ¼

2mm diameter at some intermediate packing. To char-
acterize the motion of the grains horizontal lines of colored
material were located equally spaced. These lines are
labeled by their vertical positions, ym ¼ mDy, where m is an
integer and Dy ¼ 3 cm, see Fig. 1. The vertical deflection of
the lines corresponding to the particle displacements was
recorded each time a certain amount of material was
extracted. To extract material from the hopper several
equidistant cylindrical holes were drilled centered and
perpendicular to its base. The holes located 2 cm apart are
1 cm in diameter and 7 cm in length. Every cylindrical
aperture is also provided with a flush mounted valve
located at the upper end, allowing us to select configura-
tions with different active hopper apertures. This setup
provides a simple way to investigate configurations where
the flow is produced by a single aperture or multiple
apertures. In order to study the interaction of flows, the
distance between adjacent active holes is considered a
variable. More complex situations are possible to obtain
and are reported elsewhere. An extra valve is located at
4:5 cm below the upper valve of each cylindrical hole
allowing for precise control of the extracted volume. It is
aimed to mimic the actual discrete process during the
extraction of material taking place in the mine. Fig. 2
illustrates the tracers’ motion after one, three and five
volume extractions, respectively. The deflection of tracer
lines decreases until vanishing at long distance from the
aperture. Useful information can be obtained by defining
the locus of granulates that moves a distance larger than
an arbitrary value after an extraction of material is done.
Fig. 2. Front view. Tracer lines deflection produced by granulate

displacement from a single drawpoint for one, three and five extractions,

respectively. Solid line on the right panel represents the loosening region of

maximum width W l and height H l.
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This locus is named ‘‘loosening region’’, and its extension
depends on the criterium used to determine whether or not
the granulates substantially move. In our experiments, the
loosening region includes all the granulates displaced more
than a fraction of a granulate diameter, and its width W l

increases with the extracted section S roughly as W l�S0:5

[26]. Notice that in our quasi 2D model the extracted
volume O can be written as, O ¼ hS.
Displacement of the tracer lines, in the case of flows

created by two drawpoints in simultaneous extraction, are
illustrated in Fig. 3. The interaction of flows is not
observed in the regions located very close to the aperture,
the granulate motion seems to be similar to the isolated
hoppers, see Fig. 2. However, such interaction becomes
visible quickly with increasing vertical distance from the
aperture. Remarkably, in the central region, the tracer lines
move downwards while remaining horizontal, with small
lateral deformations, as would occur in a constant
descending flow. The main features of this combined flow
can be captured by the linear superposition of isolated
flows. This is discussed in more detail using the kinematic
model framework in the next sections.

5. Two-dimensional flows

Both, the experiments described above and the hopper
flows occurring in underground mines when the block
caving method is applied, can be considered, in a first
approximation, as a quasi static process. In the caving
method, for instance, it is very often that the flux of
granulate is limited by the frequency of material extraction;
a given mass of material is taken from the drawpoint and
lar displacements in block caving: Dilatancy effects on drawbody.... Int J
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Fig. 4. Calculations of particles displacement at several vertical levels, for

a diffusion coefficient DP ¼ d. Here v0 ¼ d, with d ¼ 0:2 cm, 2R ¼ 1 cm,

and a single extraction corresponds to a section of removed material,

S ¼ 4:5 cm2. (a) Particles displacement after one extraction; (b) particles

displacement after three extractions; (c) particles displacement after five

extractions.
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then the granular column is allowed to relax until a new
extraction is required. In such situations, the average
granulate speed at the aperture is clearly restricted by the
speed of the extraction operation which is relatively slow
compared to the free flow. For a discrete extraction
process, the time scale is irrelevant and the granulate
displacement, imposed at the drawpoint, is more relevant
than the granulate speed. Thus, the kinematic model
writes,

u ¼ �DP
qv

qx
, (1)

where u and v are the horizontal and vertical displacements
of granulate, respectively. In addition, if the material is
initially in a compact state, at every extraction some
irreversible dilation takes place. The equation above
neglects any volume increases induced by the local dilation.
This effect will be included later in the text. Using the
continuity equation and ignoring dilation,

qu

qx
þ

qv

qy
¼ 0, (2)

a diffusion equation can be obtained for the vertical
evolution of an imposed vertical displacement at the
aperture. This is,

qv

qy
¼ DP

q2v
qx2

, (3)

which can be solved for given boundary conditions at the
aperture or drawpoint.

5.1. Single aperture

Let us begin studying the case of a single aperture of
finite size in a flat bottomed hopper, such that the
boundary conditions are specified at the aperture only.
Orienting the reference frame in such a way that it is
centered at the aperture of width 2R, the boundary
conditions at y ¼ 0 are, v ¼ �v0 for �RoxoR, and v ¼

0 for xo� R and x4R. With these conditions, the
solution of the diffusion equation is a superposition of
two error functions,

vðx; yÞ ¼ �
v0

2
erf

xþ Rffiffiffiffiffiffiffiffiffiffiffi
4DPy
p

� �
� erf

x� Rffiffiffiffiffiffiffiffiffiffiffi
4DPy
p

� �� �
. (4)

In turn, the calculation of the horizontal displacement u

can be easily obtained from Eq. (1). It reads,

uðx; yÞ ¼ �

ffiffiffiffiffiffiffiffiffiffi
v20DP

4py

s
½e�ðxþRÞ2=4DPy � e�ðx�RÞ2=4DPy�. (5)

Instead of plotting the whole displacement field, we follow
the motion of marked particles, located initially in a
network of equidistant horizontal lines 3 cm apart along
the vertical, and labeled by the vertical coordinate ym, i.e.,
ym ¼ mDy, with Dy ¼ 3 cm, as in the experiments, see
Fig 1. In practice to perform the calculations, it is necessary
to impose a displacement at the aperture, named here
Please cite this article as: Melo F, et al. Kinematic model for quasi static granu
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‘‘step’’ v0, smaller than the particle diameter, v0pd. Then,
the new positions of the dyed particles are calculated. To
observe the evolution of the system at the end of an actual
single extraction, as many ‘‘steps’’ as necessary are
executed until completing the ‘‘section’’ of one extraction,
S. If a similar displacement is imposed at each step, then
the displacement field does not need to be recalculated.
However, in a Lagrangian description, the step process is
required to accurately calculate the new positions of
marked particles. When these results, shown in Fig. 4,
are contrasted to the experimental results, see Fig. 2, we
observe an interesting qualitative agreement between the
tracers displacement in locations near to the aperture. In
Fig. 4 the coefficient, DP, is taken equal to the granulate
size. This is justified later in the text. However, it is
observed experimentally that granulate displacements at
the drawpoint do not affect regions located far from the
aperture. This difference between experiment and model is
due to the assumption of constant density. In other words,
the kinematic model preserves the area explored by the
tracer lines since any displacement at the aperture diffuses
along the vertical. This discrepancy can be reduced by
lar displacements in block caving: Dilatancy effects on drawbody.... Int J
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introducing the density variations through the concept of
dilation by decompaction as it is shown in Section 7.

5.2. Drawbody shapes

A few well-known concepts, such as stream lines,
drawbody shapes and motion zone can be revisited from
the point of view of the above simple description. In the 2D
flow, the streamlines are parallel to the displacement of the
particles and, therefore, they obey the following equation:

dx

u
¼

dy

v
. (6)

For the case of a narrow aperture, the above equation can
be integrated analytically and the IEZ calculated exactly
[4]. However, for finite size apertures, an analytical solution
of Eq. (6) is difficult to obtain. We then integrate it
numerically by a simple shooting method. Left panel in
Fig. 5 shows that the streamlines are nearly parabolas at
regions far from the hopper aperture. However, near the
symmetry axis of the aperture and at vertical distances of
the order of its size, the streamlines are nearly parallel. In
the usual definition, a drawbody is the geometrical initial
location of the particles that, after one extraction, cross the
aperture. Equivalently, a drawbody is simply the surface
demarcating the zone of material to be extracted. Left
panel in Fig. 5 includes the IEZ for increasing amount of
extracted material. Near the aperture, the lateral diffusion
of the vertical displacement is dominant and the IEZ wider.
For a full discussion on drawbody shapes resulting from
different types of granular flows see Ref. [4]. Here let us
recall that for narrow apertures in two dimensions, the IEZ
height H is linked to the width W as, W 2 ¼ ð24=eÞDPH. In
Fig. 5. Left panel: thinner lines are the trajectories of particles in the kinemati

are the drawbodies shapes for increasing extracted section S of material, na

calculated features H (rhombus) and W (circles) of IEZs, for the finite size ap

extremely narrow aperture.

Please cite this article as: Melo F, et al. Kinematic model for quasi static granu
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the case of finite aperture of size 2R, this result holds for a
large amount of extracted material. However, at early
stages of extraction the aperture size dominates. Right
panels in Fig. 5 show how the dimensions of IEZs,
obtained for a finite size aperture, deviate from the shape
calculated for extremely narrow aperture [4]. For this
latter, H / S1=3, W / S2=3 and W /

ffiffiffiffiffi
H
p

.

5.3. Flow interactions: two apertures in simultaneous

extraction

We now discuss the flows produced by two apertures
located at a certain distance apart. In the framework of the
kinematic model, which is a linear approximation, the flow
due to several apertures simply corresponds to the super-
position of the flow produced by individual apertures. In
general, this is written as

~v ¼
X
~Li

~vv0i
ð~x� ~LiÞ, (7)

where ~vv0i
is the displacement field produced by a single

aperture with vertical displacement ~v0i at the hopper
aperture centered at position ~Li. In other words, the
knowledge of the flow produced by a single aperture makes
it possible to construct the flow of multiple drawpoints,
when the extraction takes place simultaneously.
For simplicity, we calculate the trajectory lines and

drawbody shape in the case of two apertures of finite
width, separated by a given distance, and within the
kinematic approximation. As stated above, the velocity
field is the superposition of the two contributions. Then,
for apertures of width 2R, located symmetrically on the
horizontal axis, and separated a distance 2L, the vertical
c model description, for DP ¼ d, R ¼ ð5=2Þd and d ¼ 0:2 cm. Thicker lines

mely, S ¼ 17; 48; 190; 380; 530 cm2. Right panels: open symbols stand for

erture case, whereas solid lines are the power laws obtained in Ref. [4] for

lar displacements in block caving: Dilatancy effects on drawbody.... Int J
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Fig. 7. Draw body resulting from the interaction of the flow produced by

two apertures for increasing extracted section S ¼ 40; 190; 350; 630;
830 cm2. The parameters are DP ¼ d, R ¼ ð5=2Þd, L ¼ 40d, d ¼ 0:2 cm.
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displacement reads,

vðx; yÞ ¼ �
v0

2
erf

x� Lþ Rffiffiffiffiffiffiffiffiffiffiffi
4DPy
p

� �
� erf

x� L� Rffiffiffiffiffiffiffiffiffiffiffi
4DPy
p

� �� �

�
v0

2
erf

xþ Lþ Rffiffiffiffiffiffiffiffiffiffiffi
4DPy
p

� �
� erf

xþ L� Rffiffiffiffiffiffiffiffiffiffiffi
4DPy
p

� �� �
. ð8Þ

The respective horizontal displacement u, after an elemen-
tary extraction, can be easily obtained from u ¼ �DPðqv=
qxÞ. Thus, with the help of the above considerations, the
total displacement is evaluated numerically to follow the
deflection of tracer lines. The calculations of such deflec-
tions are presented in Fig. 6 for several amounts of
extracted granular material. The interaction zone is clearly
visualized in the region between the two apertures, specially
far above the apertures where the displacement of tracer
lines might become nearly parallel. It can be easily
anticipated that, if the diffusion coefficient DP is small
and apertures are too far apart, the flows due to single
apertures may not interact. A detailed discussion of the
criterium and parameters that determine whether or not
interaction of flows occurs is given in Ref. [4].

The streamlines and drawbody shapes for double
aperture hoppers are calculated numerically and presented
in Fig. 7 for increasing amount of extracted material. The
flow interaction is well visualized between the two
apertures where streamlines are nearly parallel. On the
other hand, far from the apertures and outside of the
middle region, the streamlines are parabolas whose
curvature is solely determined by the diffusion coefficient.

6. Three-dimensional flows

In order to compare the kinematic model’s predictions
with the experimental results, we will solve this model in
Fig. 6. Snapshots of particles displacement at several levels, for two

apertures 8 cm apart. The size aperture is 2R ¼ 1 cm and the diffusion

coefficient is DP ¼ d ¼ 0:2 cm. As above, a single extraction, at a given

aperture, corresponds to S ¼ 4:5 cm2. Here v0 ¼ d. (a) Particles displace-

ment after one extraction; (b) particles displacement after three extrac-

tions; (c) particles displacement after five extractions.
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three dimensions and take into account the exact geometry
employed in the experiments. With the assumption of a
constant diffusion coefficient, the kinematic model is
generalized to three dimensions as

u ¼ �DP
qv

qx
, ð9Þ

w ¼ �DP
qv

qz
. ð10Þ

By including these expressions into the continuity equation
and neglecting the density variations, the equation for the
vertical displacement v, can be written as

qv

qy
¼ DP

q2v
qx2
þ

q2v
qz2

� �
. (11)

Now, the geometry of the system and a set of boundary
conditions must be provided to determine the displacement
field. Let us consider a Cartesian coordinate system
centered at the bottom of the box, such that the system is
extended from �Lx to Lx, 0 to Ly and �Lz to Lz in the x, y

and z directions, respectively. A rectangular hole is located
centered at the base of the box and it is defined such that,
�DxpxpDx and �DzpzpDz, where DxoLx and
DzoLz. On the other hand, the boundary condition in
the vertical direction is related to the extraction procedure
at the hopper aperture. While the lateral boundary
conditions, restricting the horizontal movement of the
material to inside the box, are given by uj�Lx

¼

qv=qxj�Lx
¼ 0 and wj�Lz

¼ qv=qzj�Lz
¼ 0. In order to

reproduce the actual experimental situation the displace-
ments are calculated at the front wall of the hopper, where
the colored tracer particles are visible in the experiment,
i.e., vðx; y ¼ mDy; z ¼ þLzÞ. Notice that, the experimental
lar displacements in block caving: Dilatancy effects on drawbody.... Int J
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Fig. 8. Granulates displacement at several height levels, as observed

experimentally, compared to calculations in three dimensions, for DP ¼ d

and the exact geometry of the experiment. Left panel: after one extraction.

Right panel: after three extractions.
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flow is 3D even though the hopper gap 2Lz is small
compared to the other lengths. The linear nature of the Eq.
(11) allows to use the separation of variables method, then
we can write v ¼ X ðxÞY ðyÞZðzÞ. Replacing v into Eq. (11)
and introducing the separation constants kx and kz the
following three equations are obtained, q2X ðxÞ=qx2þ

k2
xX ðxÞ ¼ 0, q2ZðzÞ=qz2 þ k2

zZðzÞ ¼ 0 and qY ðyÞ=qyþ

DP½k
2
x þ k2

z �Y ðyÞ ¼ 0. The first two equations admit a
linear combination of harmonic functions as a solution,
i.e., Ax cos xþ Bx sin x and Az cos zþ Bz sin z, while the
solution of last equation can be written as Y ðyÞ ¼ E

exp�½k2
z þ k2

x�DPy. The symmetry requirements imply that
B ¼ D ¼ 0. On the other hand, the separation constants
are determined by imposing the lateral boundary condi-
tions and are given by kx ¼ ðmp=LxÞ and kx ¼ ðnp=LzÞ,
where m; n ¼ 0 � � �1. Finally, the vertical displacement is
given by the linear combination of the solutions character-
ized by the numbers m and n, that is v ¼

P1;1
n;m¼0Anm

cosðnp=LxxÞ cosðmp=LzzÞ expð�DP½ðnp=LxÞ
2
þ ðmp=LzÞ

2
�yÞ,

where the constants A, C and E were refunded in the
coefficients Amn. These coefficients depend on the vertical
boundary conditions which is related to the material
extraction process. As an example, let us consider a
boundary condition given by a constant volume of
extraction, i.e., vðx; y ¼ 0; zÞ ¼ �v0, then the coefficients
that characterize the vertical displacement are given by
Amn ¼ �v0ð4=p2mnÞ sinðmpDx=LxÞ sinðnpDz=LzÞ. Repla-
cing v in Eqs. (9) and (10) the lateral displacements can
be determined. In Fig. 8, it is shown the vertical
displacements after one and three extractions, respectively.
Using DP as an adjustable parameter, good agreement is
obtained for the particles located near to the aperture if DP

is close to d. However, theoretical predictions become
gradually poorer for particles located at higher vertical
positions. It is worthy to note that, due to the constant
density hypothesis involved in the calculations, the
integrated deflection, for all initially dyed horizontal lines,
must be basically the total section of granulate extracted
from the aperture. This condition is clearly not fulfilled for
the experimental deflections. Therefore, dilatancy effects
must be taken into account. For the double aperture case,
the displacement field can be directly calculated by the
superposition of the contributions from each aperture.
Comparisons—not presented here—of these results
with experimental ones provide a good agreement near
the aperture. However, similar to the results presented in
Fig. 8, far above the apertures, the agreement becomes
poor due to dilation effects.

7. Dilatancy effects

Although it seems quite natural to assume that the
dilation effect is the main reason for the partial disagree-
ment between the experimental and theoretical displace-
ment fields, we provide some more evidence to support this
assumption by exploring the amount of light transmitted
through the granular material when the number of
Please cite this article as: Melo F, et al. Kinematic model for quasi static granu
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extractions is increased. The snapshots depicted in Fig. 9
were taken while illuminating the granulate from behind
homogeneously. Thus, the small packing variations are
detected by contrast difference on the picture. Naturally,
the observed increase of light transmission is due to some
dilation which in turn is produced by granulate motion.
Panels of Fig. 9 also give useful indications of the
boundaries of motion-loosening-zone.
For simplicity, we investigate dilatancy effects in 2D

configurations. Notice that for the experiments presented
here, this approximation holds since the dilation effects are
significant only far from the aperture, where our config-
uration can be considered as truly 2D. One evidence of this
fact is that the profile of the free surface does not vary
along the axis perpendicular to the parallel walls, see Fig. 9.
One possible way to account for dilation in the kinematic
model is by means of introducing the additional displace-
ment udðvÞ and vdðvÞ, due to local packing variation, such
that Eq. (1) becomes,

u ¼ �DP
qv

qx
þ udðvÞ, (12)
lar displacements in block caving: Dilatancy effects on drawbody.... Int J
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Fig. 9. All panels are front views of the granular compact as produced

when intense transmitted light is used. Zones of lower densities appear

more illuminated and correspond to regions in which granulate displace-

ment took place.
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where udðvÞ is an implicit function of space through the
vertical displacement v. Then, the continuity equation
reads,

drþ rr
!
� v!þ v!� r

!
r ¼ 0, (13)

where we will assume that the advection of density
gradients, v!� r

!
r�0, is small, since the density variation

is mainly induced when a density front moves upwards. In
this case Eq. (13) becomes,

qu

qx
þ

qv

qy
¼ DS=S0 ¼

qudðvÞ

qx
þ

qvdðvÞ

qy

� �
, (14)

where DS=S0 is the relative variation of the section
occupied by the material. Differentiating Eq. (12) and with
the help of Eq. (14), it is found that,

qv

qy
¼ DP

q2v
qx2
þ

qvdðvÞ

qy
, (15)

and

qu

qx
¼ �DP

q2v

qx2
þ

qudðvÞ

qx
, (16)

in which dilatancy terms are unknown and difficult to
derive from first principles. Therefore, we will look for
suitable heuristic approximations for these quantities.

Let us first consider an ideal case in which diffusion is
turned off and a small displacement is imposed at the
hopper aperture, whose size is taken to be much larger than
the average granulate diameter. Then, take dilatancy as a
function of the local displacement only. If we assume that
the entire granulate is initially in a homogeneous state of a
given packing, for instance a random close packing (RCP),
and after some motion of grains jvjbd, it dilates to a
random loose packing (RLP), such a function must
saturate to a maximum dilation value a0, which is simply
the relative difference between the initial and final packing,
in this case, a0 ¼ arcp�rlp. However, when the displacement
is small, i.e., jvj5d, the dilation should vanishes. The
Please cite this article as: Melo F, et al. Kinematic model for quasi static granu
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simplest choice that satisfies the above requirements reads,

qv

qy
¼ �a0 tanh

v

d
, (17)

which in the limit of small displacement becomes,

qv

qy
¼ �a0

v

d
, (18)

that predicts an exponential decrease of the vertical
displacement as a function of height.
To handle compressions, that in our configuration would

occur when imposing positive displacements at the hopper
aperture, a0 needs to be replaced by its respective value.
For instance, the one characterizing a transition from RLP
to a more compact state. Note that a0 is defined here as
positive.
At this stage, we justify in more detail the approxima-

tions involved in deriving Eq. (18). Although it has been
well known since Bagnold’s time that shear induces
dilation, in our case, we have assumed that the main
mechanism of dilation is decompaction instead of shear.
Simple scale arguments allow us to sustain such an
assumption. The two main contributions to dilation
induced by shear are estimated to be: qud=qxshear

�a0ðqv=qxÞ, and qvd=qyshear�a0ðqu=qyÞ. Where the terms
at the right indicate that a dilation of a fraction a0 occurs
when the particles experience a shear of order 1, or
equivalently, when the granulates under scope glide a
distance of one diameter over their nearest neighbors.
Using the kinematic model and mass conservation, these

expressions can be rewritten as, qud=qxshear�ða0=DPÞu�

ða0v0=
ffiffiffiffiffiffiffiffiffi
DPy
p

Þ and, ðqvd=qyshearÞ�a0DPðq
2v=qyqxÞ�ða0v0=ffiffiffiffiffiffiffiffiffi

DPy
p

ÞðDP=yÞ, where v0 is the scale of vertical displace-
ment. Since in our coarse grained approximation the
vertical coordinate is always larger than the particle
diameter, ybd, qud=qxshearbqvd=qyshear. Now the decom-
paction contribution to dilation becomes, qvd=qy�ða0=dÞv

�ða0=dÞv0, which clearly dominates over the shear con-
tribution. Notice that dilation cannot take place indefi-
nitely and must cease once the granulate has reached the
loosest state. This effect is not important for the rough
estimate above. Thus, in the following, we only consider
the decompaction contribution to dilation as given by Eq.
(18) and qud=qx�0.

7.1. Diffusion dilation equations

Coming back to our original problem, we write the
equation for the displacement field including diffusion as
well as dilation. When jvj5d, it reads,

qv

qy
¼ DP

q2v

qx2
� a0

v

d
. (19)

The small displacement approximation is preferred instead
of Eq. (17) to follow more precisely the trajectories of the
tracer particles. Indeed, to mimic a single extraction, we
produce successive small displacements of equal size,
lar displacements in block caving: Dilatancy effects on drawbody.... Int J
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Fig. 10. Particles displacement from experimental visualization contrasted

to the tracers displacement, as calculated from finite element procedure

with a grid resolution of Dx ¼ d=4;Dy ¼ d=8, using the experimental

parameter values and considering DD ¼ 0 and a0 � 0:1. The experimental

parameters are DP ¼ d ¼ 0:2 cm, v0 ¼ 2:2d, 2D ¼ 0:4 cm and S ¼ 4:5 cm2.

(Left panel) Particles displacement calculations after one extraction.

(Right panel) Particles displacement calculations after five extractions.
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labeled by the index n, at the hopper aperture until
removing the desired amount of material. Thus, for every
step, the displacement field is obtained and the new tracer
positions are calculated accurately. Another advantage of
the small displacement approximation is that the local
density of the material can be refreshed at each step,
producing more realistic results. In summary, the general-
ized diffusion dilation equation for step n, can be written as

qvn

qy
¼ DRLP

q2vn

qx2
� DDf ðvT=dÞ

q2vn

qx2
� a0f ðvT=dÞ

vn

d
, (20)

where vn is the displacement field produced by the step n

and vT ¼
Pn�1

i¼0 vk is the total local-displacement (vT ¼
vTðx; yÞ) after n� 1 steps. The function f ðvT=dÞ insures that
the local dilation is reduced with the cumulated local
displacements, in such a way that dilation vanishes when
the total displacement vT is larger than d. In short, f ðvT=dÞ

is taken as e�jvTj=d which assures that the system stops
dilating after a set number of steps. In addition, it can be
seen that the diffusion coefficient DP is now defined as,
DRLP � DDe�jvTj=d , which includes the variation of DP, DD,
due to the dilation occurring when the material dilates
from the RCP to the RLP state. DRLP is the diffusion
coefficient for a RLP state, DD ¼ DRLP �DRCP is the
difference between the diffusion coefficient of the RLP
state and the RCP state, and a0 is the maximum possible
dilation as before.

Eq. (20) can be solved using a finite element method,
such as the Crank–Nicholson procedure. In Fig. 10, we
contrast our experimental results to the displacement of the
tracers predicted by the diffusion–dilation model. The
agreement is acceptable if the dilation coefficient is
adjusted to a0 � 0:1 and can be further improved by
adjusting DP and a0 simultaneously.

In Fig. 11, we compare the calculated displacement field
including the dilation effect to previous dilation-less
calculations. Whereas in the purely diffusive model (left
panel) the displacement penetrates upward the entire cell,
in the dilation model it progresses gradually from the
bottom of the hopper (right panel). For further comparison
each panel includes the IEZ and loosening body as well. In
both cases, the maximum width of the IEZ varies as
W�

ffiffiffiffiffiffiffiffiffiffiffi
DPH
p

. Furthermore, at equal extracted volume, in
the presence of dilation, the maximum width of the IEZ is
slightly larger indicating that, at the lowest order, the
presence of dilation is equivalent to a slightly larger
diffusion coefficient. As recently summarized by Kuzmin
[27], experimental evidence obtained in operating mines
shows that the aspect ratio of the IEZ effectively obeys a
diffusion type law for which W �

ffiffiffiffiffi
H
p

. Our analysis
shows, in addition, that the geometry of IEZ is not affected
by dilation effects.

The aspect ratio of the motion zone can also be
investigated. In the absence of dilation, the width of this
zone increases linearly with the amount of extracted
material [4]. In contrast, in the presence of dilation, this
zone can be fitted by a power law as W l�S0:5 which
Please cite this article as: Melo F, et al. Kinematic model for quasi static granu
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reproduces the behavior observed in our experiments [26].
However, calculations show that this power law might not
be extended over a wide regime of draws and should be
regarded with care.
Some interesting features of the evolution of the

granulate free surface can be investigated with the help of
the kinematic model. As the free surface moves with the
grains, its vertical amplitude Z obeys the partial differential
equation,

qZ
qn
¼ vþ u

qZ
qx

, (21)

where n is the extraction step. Fig. 9 also shows the
evolution of the free surface of the granulate. To solve Eq.
(21), in a crude approximation, we assume that the
displacement field is not affected by the presence of the
free surface and it is sufficient to replace vðZÞ and uðZÞ,
obtained from relations (4) and (5), in Eq. (21) to
determine the surface evolution. Since the granulate
lar displacements in block caving: Dilatancy effects on drawbody.... Int J
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Fig. 11. Comparisons of tracers displacement, in the absence of dilation (left panel, a0 ¼ 0), with dilation (right panel, a0 ¼ 0:1), at several vertical levels
after 0:8 extraction, as calculated from finite elements procedure with a grid resolution of Dx ¼ d=8;Dy ¼ d=4. In both panels, the diffusion coefficient is

DP ¼ d ¼ 0:2 cm, 2R ¼ 0:4 cm and v0 ¼ 2:2d. Isolated extracted zones (solid lines) and loosening zones (open circles) are also displayed for 0:4 and 0:8
extractions.
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dilation is not too high for the case depicted in the middle
panel of Fig. 9, the kinematic model is able to capture
reasonably well the evolution of the surface. For instance,
at early stages of extraction, i.e., when uðZÞðqZ=qxÞ5vðZÞ
the surface deflection exhibits an inverted Gaussian shape
which is consistent with a diffusive displacement field.
However, for later stages of the extraction process, the
granulate surface becomes more inclined and its dynamics
dominated by intermittent or continuous avalanches that
cannot be captured by the simple kinematic model, right
panel of Fig. 9.

7.2. Discussion

Although the results presented above are deduced from
rather simple situations compared to mining conditions,
where heterogeneity of rocks, density changes, rocks shape
and size reduction due to friction among others, play an
important role, we believe that they might be useful for ore
recovery optimization. For instance, recent experiments
[16] have shown that no bulk segregation takes place in
mixtures of granular materials that flow in hoppers.
Significant size separation occurs only when the free
surface becomes inclined at the avalanche angle. The
mechanism of this effect is well known and a variety of
situations can be found depending on the size contrast and
particle shape, see [28]. Therefore, in granular mixtures, the
kinematic model still can be applied if an effective diffusion
coefficient is introduced. In addition, the information
contained in the displacement field allows to determine
the features of the maximum shear regions and should
provide important insights about the particle size reduction
due to this strong shear. Much experimental effort is,
however, necessary to refine the simple description
presented above to accurately describe complex flows
encountered in actual mines.
Please cite this article as: Melo F, et al. Kinematic model for quasi static granu
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7.3. Conclusions

Due to its linearity, the kinematic model is introduced to
describe, in a first approximation, the granulate displace-
ment field generated by an isolated hopper flow. When
calculated and measured tracer movements are compared,
by adjusting the diffusion coefficient to a value near to d, a
good agreement is observed in regions close to the hopper
aperture. However, due to the constant density assumption
of the kinematic model in its original form, it cannot
handle internal changes in volume taking place when the
material starts to flow. This is reflected in the deviation of
calculated positions of the tracers from the experimental
ones, at distances far from the aperture. This discrepancy is
corrected by considering the changes in local density
through a dilation term. Then, at equal extracted amount
of material, when dilation is present, a slightly larger
maximum width is obtained which is equivalent to a
slightly larger diffusion coefficient. Thus, the introduction
of the dilation effect does not affect the functional
dependence of height H with the width W and the relation
W�

ffiffiffiffiffiffiffiffiffiffiffi
DPH
p

still hold. In contrast, the loosening or motion
zone is dramatically affected by dilation effects.
Experimental results show that neighboring hoppers

interact notoriously when the distance between drawpoints
is decreased. When high interaction occurs, which is also
favored by the drawpoint width, the movement of the
tracer particles located in the zone between drawpoints,
resembles a constant descending flow with small lateral
deformations. The main features of these interacting flows
can be captured by considering the linear superposition of
displacement fields produced by the individual drawpoints.
Thus, the development of the linear approximation as

well as the ‘‘Diffusion–Dilatancy’’ equations provide a new
tool to the study of more complex configurations, which
might include stratified granular materials of different size
lar displacements in block caving: Dilatancy effects on drawbody.... Int J
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or even distinct packing as well as hoppers of more
complex geometry. For instance, the generalization of these
results to multiple hopper flows should not present any
technical difficulty.

Acknowledgments

This work was supported by IM2 Codelco and Conicyt
under research program Fondap no. 11980002.

References

[1] Laubscher, D. A practical manual on block caving, for the

international caving study, 1997–2000.

[2] Brown, ET. Block caving geomechanics. The international caving

study I, 1997–2000. JKMRCmonograph series in mining and mineral

processing, University of Queensland, vol. 3. Indooroopilly, Aus-

tralia: JKMRC; 2003.

[3] Rustan, A. Gravity flow of broken rock—what is known and

unknown. In: Conference proceeding of MassMin 2000: the

Australasian institute of mining and metallurgy, 2000. p. 557–567.

[4] Melo F, Vivanco F, Fuentes C, Apablaza V. On drawbody shapes:

from Bergmark–Roos to kinematic models. Int J Rock Mech Min Sci

2007;44:77–86.

[5] Kvapil R. Gravity flow of granular material in hoppers and bins, part

1. Int J Rock Mech Min Sci 1965;2:35–41.

[6] Kvapil R. Gravity flow of granular material in hoppers and bins, part

2. Int J Rock Mech Min Sci 1965;2:277–304.

[7] Janelid I, Kvapil R. Sublevel caving. Int J Rock Mech Min Sci

1966;3:129–53.

[8] Heslop TG, Laubscher DH. Draw control in caving operations on

Southern African chrysotile asbestos mines. In: Stewart DR, editor.

Design and operation of caving and sublevel stopping mines. New

York: SME-AIME; 1981.

[9] Laubscher DH. Cave mining—the state of the art. J South African

Inst Min Metall 1994;94:279–93.

[10] Laubscher, DH. Block cave manual, design topic: drawpoint spacing

and draw control, Julius Kruttschnitt Mineral Research Centre, The

University of Queensland, Brisbane, Australia; 2000.

[11] Marano, G. The interaction between adjoining draw points in free

flowing materials and its application to mining. Chamber of Mines

Journal, Zimbabwe; 1980. p 25–32.
Please cite this article as: Melo F, et al. Kinematic model for quasi static granu

Rock Mech Mining Sci (2007), doi:10.1016/j.ijrmms.2007.07.005
[12] Janelid I. Study of the gravity flow process in sublevel caving. In:

Proceedings of the international sublevel caving symposium. Stock-

holm: Atlas Copco; 1972.

[13] Peters, DC. Physical modeling of the draw behavior of broken rock in

caving. Quarterly of the Colorado School of Mines, vol. 79(1), 1984.

[14] Power, GR. Modelling granular flow in caving mines: large scale

physical modelling and full scale experiments. PhD thesis, The

University of Queensland, Brisbane; 2004.

[15] Aranson IS, Tsimring LS. Patterns and collective behavior in

granular media: theoretical concepts. Rev Mod Phys 2006;78:641–92.

[16] Samadani A, Pradham A, Kudrolli A. Size segregation of granular

matter in silo discharges. Phys Rev E 1999;60:7203–9.

[17] Nedderman RM. Statics and kinematics of granular materials.

Cambridge: Cambridge University Press; 1992.

[18] Bagnold RA. Experiment on a gravity-free dispersion of large solid

spheres in a Newtonian fluid under shear. Proc R Soc London Ser A

1954;225:49–63.

[19] Beverloo WA, Leniger HA, van de Velde J. The flow of granular

solids through orifices. Chem Eng Sci 1961;15:260–9.

[20] Behringer RP. The dynamics of flowing sand. Nonlinear Sci Today

1993;3:2–15.

[21] Mullins WW. Experimental evidence for the stochastic theory of

particle flow under gravity. Powder Technol 1976;9:29–37.

[22] Litwiniszyn J. The model of a random walk of particles adopted to

researches on problems of mechanics of granular. Bull Acad Pol Sci

Ser Sci Technol 1963;9:61.
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